Micro and Macro Analysis of Railroad Grade Crossing Safety

Rahim F. Benekohal
Juan C. Medina
Jacob Mathew

University of Illinois at Urbana-Champaign
May 21, 2015
Integrate 3 Components

1. Accident analysis (micro)
2. Real-time prediction and monitoring of conflicts
3. Location and operation of emergency response resources
Micro and Macro Analysis (Component 1)

Micro Analysis (at single crossing or corridor):
- Trend discovery using a dynamic tree
- Identification of contributing factors
- Quantify accident occurrence and risk

Macro Analysis (at regional/national level):
- Statistical models to integrate Micro Analysis findings
- Evaluating effects of new variables found micro analysis
- Comparisons with current prediction models
Micro Approach – Single Crossing

• Initially started as a manual process (done by person)

• **Three steps in manual process:**
 1. Sketch of crossings with key info
 2. Follow the tree structure (hierarchy is given) to spot trends
 3. Bring in additional information (e.g. surroundings, land use, nearby ramps)
A Micro Approach – Single Crossing

- Sketch of crossings with key info:
Manual Micro Approach Hierarchy

- Order of attributes

- Highway User Type
 - (typeveh)

- Action of Motorist
 - (motorist)
 - 1 = Drove around or thru the gate
 - 2 = Stopped and then proceeded
 - 3 = Did not stop
 - 4 = Stopped on crossing
 - 5 = Other

- Highway User Direction
 - (vedir)
 - 1 = north, 2 = south, 3 = east, 4 = west
 - (Depend on the actual Geometrical direction on the map)

- Time Table Direction
 - (unidir)
 - 1 = north, 2 = south, 3 = east, 4 = west
 - (Depend on the actual Geometrical direction on the map)

- Circumstance of Accident
 - (typacc)
 - 1 = rail equipment struck highway user
 - 2 = rail equipment struck by highway user

- Vehicle Driver Age and Gender
 - (driverage, drivgen)
 - (drivage): Numerical value of the age
 - (drivgen): 1 = male, 2 = female

- Weather Condition and Visibility
 - (weather, visibility)
 - (weather): 1 = clear, 2 = cloudy, 3 = rain
 - 4 = fog, 5 = sleet, 6 = snow
 - (visibility): 1 = dawn, 2 = day, 3 = dusk, 4 = dark

- K = Pedestrian
 - A-J = Motorized vehicle
 - M = Other
Manual Micro Approach – Single Crossing

Example 1: crossing with 9 Accidents (17387G)

Trend?
EB train hits SB vehicles
Example 2: Crossing with 5 accidents

- In 4 of 5 accidents, drivers was older than 80
- The youngest driver was 61 years old!

Why such a trend?
Bringing in more data

Example 2 (Cont...)

• Revealed high concentration of assisted living communities.

• So, countermeasures should focus on older drivers

• How findings like this can be used at macro level?
Improvements to Manual Micro Approach

- Computerize the process to reduce time, expand it application, etc
- Determine the hierarchy dynamically (data driven vs pre-determined)
- Consider more attributes than the manual method (e.g. 7 vs 22)
- Use more than one attribute at a time
Methods for Determining Hierarchy

• Method A
 • Distribute the total number of accidents into the subcategories for each of the 22 attributes
 • Sort the attributes based on the largest subcategory of accidents to determine the hierarchy
 • Establish a main branch of the tree by sequentially dividing the largest subcategory for Attribute 1 into subcategories for Attribute 2 based on the established hierarchy;and so on

 – Advantages
 • Simple and hierarchy relies on the distribution of accidents into subcategories for this crossing

 – Disadvantage
 • Another hierarchy may identify the trend in the main branch “better” than Method A by keeping a higher number of accidents in subcategory at comparable level
Methods for Determining Hierarchy

• Method B
 • Establish the highest ranking attribute as in Method A
 • Divide the accidents in the largest subcategory of Attribute 1 into subcategories of the un-selected attributes to determine the 2nd highest ranking attribute
 • This stepwise procedure is continued to determine the 3rd, 4th, 5th... highest ranking attributes

 – Advantages
 • Keeps the trend in the main branch of the tree better than Method A
 – Disadvantage
 • There may be ties in ranking of the attributes
 • This focus on the main branch and does not consider the accident on other branches
Methods for Determining Hierarchy

• Modified Method B
 • Use historic accident data to resolve ties in establishing the hierarchy
 • It finds “Crossing Cluster” which is the sum of no accidents in all branches of an attribute for the subcategory that identified the trend in main branch

• Advantages of Modified Method B
 • Keeps accidents clustered together without breaking trend
 • Can detect over/under representation
 • Shows “Crossing Cluster” information to give a big picture
 • Can be used to identify trends on various crossings
Level of Analysis Using the Dynamic Tree

• Single location with multiple accidents
 – Dynamic tree
 – Simultaneously using two or more attributes

• Multiple locations
 – Dynamic tree for a corridor
 – Dynamic tree for all single-accidents location combined
Single Location With Multiple Accidents (computerized)

Crossing with 9 accidents (173887G)

DYNAMIC TREE
- Total (9)
 - Motorists (8)
 - Ped (1)
 - <20 (8)
 - East (7)
 - West (1)
 - Rail->HW (6)
 - HW->Rail (1)
 - 30-60 (6)
 - Stopped on Crossing (5)
 - Yes (4)
 - South (4)
 - Others (4)
 - Moving Over Crossing (1)
 - Unknown (1)
 - North (1)
 - North(1)
- TYPVEH
- VEHspd
- TRNDR
- TYPACC
- DRIVAGE
- POSITION
- WARNSIG
- VEHDIR
- MOTORIST

ATTRIBUTES
- Total
- TYPVEH
- VEHspd
- TRNDIR
- TYPACC
- DRIVAGE
- POSITION
- WARNSIG
- VEHDIR
- MOTORIST

CROSSING CLUSTER
- Motorized vehicles (8)
 - <20 (8)
 - East (7)
 - Rail->HW (7)
 - 30-60 (7)
 - Stopped on Crossing (5)
 - Yes (7)
 - South (5)
 - Drove Around (4)
 - Other (4)
Observations about the previous slide

- 7 out of 8 accidents involved an EB train
- In 6 out of the 7 accidents, train hit the highway vehicle
- In 5 out of the 7 accidents, vehicles were stopped on crossing
- 4 out of the 5 accidents were SB vehicles
- Action of motorist in all 4 accidents was “other”,
 - “Other” meant the motorists stopped on crossing before the gates descended
Comparison of Dynamic vs Manual Method

- Dynamic hierarchy is based on accident data for that crossing, but Manual method is based on a pre-determined hierarchy

- Computerized method kept trends of the Manual method AND revealed more info than the manual

- Even when the same attributes are considered, the ranking of the attributes can be different in two methods

- Using a computer program makes process quicker with no chance for errors
Multiple Locations

- Corridor Analysis
- Analysis of all single accident locations combined
Example Corridor

- Northeast Illinois Regional Commuter Railroad
- 23 accidents at 8 crossings between 2002 and 2011
Corridor Analysis

Dynamic Tree

- Total
 - Passing Train (1)
 - Not Obstructed (22)
 - Motor Vehicle (22)
 - Both Sides (21)
 - Side of Vehicle Approach (1)
 - Main (20)
 - Rail->HW (17)
 - North (3)
 - < 20 (11)
 - AM (5)
 - Stopped on Crossing (2)
 - Driven Around Gate (6)
 - 20-40 (1)
 - PM (8)
 - Moving Over Crossing (6)
 - South (14)
 - 40-60 (4)
 - HW->Rail (5)
 - Yard (1)

Attributes

- View
- Type Veh
- Location
- Type Track
- Type of Accident
- Tread Direction
- Vehicle Speed
- Time
- Position
- Motorist

Corridor Cluster

- Not Obstructed (22)
 - Vehicle (22)
 - Both Sides (22)
 - Main (21)
 - Rail->HW (19)
 - South (15)
 - < 20 (15)
 - AM (12)
 - PM (4)
 - Moving Over Crossing (18)
 - Driven Around (15)
Observations about the previous slide

• 19 out of 23 cases involve rail hitting the highway vehicle

• 14 out of 22 vehicles were hit by a south bound train
 • Any reason/cause?

• 18 of the 22 motor vehicle accidents involved the vehicle moving over the crossing

• 14 out of 22 accidents occurred during PM
Locations with one Accident
Dynamic Tree for Single Locations with Crossbucks

DYNAMIC TREE

- **Total (207)**
 - **Motor Vehicle (204)**
 - **Permanent Obstruction**
 - **Vegetation (2)**
 - **HW Vehicle (1)**
 - **Other (1)**
 - **Ped (1)**
 - **Other (2)**
 - **Not Obstructed (194)**
 - **Both Sides (183)**
 - **Main (171)**
 - **Yes (6)**
 - **No (148)**
 - **Unknown (3)**
 - **Yard (3)**
 - **Siding (1)**
 - **Industry (8)**
 - **Side of Approach (11)**
 - **Unknown (17)**
 - **Rail -> HW (97)**
 - **HW -> Rail (20)**
 - **Dawn (3)**
 - **Day (79)**
 - **Dusk (2)**
 - **Dark (13)**
 - **Clear (63)**
 - **Cloudy (16)**
 - **<20 (50)**
 - **20-40 (101)**
 - **>40 (3)**
 - **Male (41)**
 - **Female (9)**

ATTRIBUTES

- **TOTAL**
 - **TYPVEH**
 - **VIEW**
 - **LOCWARN**
 - **TYPTRK**
 - **LIGHTS**
 - **WARNSIG**
 - **TYPACC**
 - **VISIBILITY**
 - **WEATHER**
 - **VEHDSRD**
 - **DRIVGEN**

CLUSTER

- **Motor Vehicle (204)**
 - **Unobstructed (200)**
 - **Both Sides (196)**
 - **Main (191)**
 - **No (166)**
 - **No (158)**
 - **Rail -> HW (157)**
 - **Day (155)**
 - **Clear (137)**
 - **<20 (144)**
 - **40-60 (21)**
 - **Male (162)**
Dynamic Tree for Single Locations with Fl.Lights

Dynamic Tree

- Total (147)
 - Both Sides (143)
 - Side of Approach (2)
 - Opposite Side (2)
 - Unobstructed (136)
 - Ped (4)
 - Motorist (127)
 - Others (5)
 - Main (118)
 - Yard (4)
 - Siding (1)
 - Industry (4)
 - Stalled (3)
 - Stopped (20)
 - Moving (94)
 - Trapped (1)
 - Stopped and Proceeded (15)
 - Yes (3)
 - No (63)
 - Unknown (10)
 - Clear (46)
 - Cloudy (9)
 - Rain (1)
 - Fog (3)
 - Snow (4)

Attributes

- TOTAL
- LOCWARN
- VIEW
- TYPVEH
- TYPTRK
- POSITION
- MOTORIST
- WARNSIG
- WEATHER

Cluster

- Both Sides (143)
- Unobstructed (140)
- Motorist (138)
- Main (137)
- Moving (120)
- Did not stop (97)
- No (113)
- Clear (98)
Observations from Previous Slides

• All-single-accident-locations-combined did not reveal trend,
 - But dividing it into: gated, flashing lights, cross buck did.

• Most Pedestrian accidents occurred at gated crossings (55 out of 60)

• Most accidents during dark occurred at gated crossings (162 out of 257)

• Most accidents with vehicle speed > 40 occurred at cross bucks (21 out of 56)

• Therefore it is important create dynamic tree for the “right” subset of data.
Work in Progress

• Validation
 - Different dataset from one state, data from different state
• Analysis involving more than one attributes
 - Extending this to multiple attributes
• Various combinations of attributes at multiple accident locations

• Integrate the findings from micro in building macro model

• Develop Integrated micro and macro levels

• Compare new macro model to current accident prediction model.
Micro and Macro Analysis of Railroad Grade Crossing Safety

Thanks!

Questions?

Rahim F. Benekohal (rbenekoh@Illinois.edu)
Juan C. Medina (jcmedina@Illinois.edu)
Jacob Mathew (jmathew7@Illinois.edu)

Oct 2, 2014 – University of Illinois at Urbana-Champaign